A sound you can’t hear but may one day change your life
Undergoing clinical trials around the world is a brain surgery that doesn’t need an incision or produce any blood yet drastically improves the lives of people with essential tremor, depression and more. The procedure, known as a focused ultrasound, aims sound waves at parts of the brain to disrupt faulty brain circuits causing symptoms. ... Kassell describes the way it works as “analogous to using a magnifying glass to focus beams of light on a point and burn a hole in a leaf. ... With focused ultrasound, instead of using an optical lens to focus beams of light,” he added, “an acoustic lens is used to focus multiple beams of ultrasound energy on targets deep in the body with a high degree of precision and accuracy, sparing the adjacent normal tissue.”
... Today, focused ultrasound technology is used globally in various stages, including clinical trials and approved regulatory use. There are more than 170 clinical uses — including for neurodegenerative disorders and tumors of the brain, breast, lung, prostate and more — and the field is growing, Kassell said. “You can watch the effect of the ultrasound treatment in real time while the treatment’s being administered, whereas with radiation, the effect of the treatment is invisible while it’s being administered,” Kassell said. “And it takes weeks or months for the effect of radiation to become apparent.”
... Use for depression and obsessive-compulsive disorder is on the table, according to a small 2020 study by Lipsman and a team of researchers. They found focused ultrasound was safe and effective in improving symptoms for people with major depression and OCD. But further studies are needed.
https://us.cnn.com/2023/01/15/health...ess/index.html
Undergoing clinical trials around the world is a brain surgery that doesn’t need an incision or produce any blood yet drastically improves the lives of people with essential tremor, depression and more. The procedure, known as a focused ultrasound, aims sound waves at parts of the brain to disrupt faulty brain circuits causing symptoms. ... Kassell describes the way it works as “analogous to using a magnifying glass to focus beams of light on a point and burn a hole in a leaf. ... With focused ultrasound, instead of using an optical lens to focus beams of light,” he added, “an acoustic lens is used to focus multiple beams of ultrasound energy on targets deep in the body with a high degree of precision and accuracy, sparing the adjacent normal tissue.”
... Today, focused ultrasound technology is used globally in various stages, including clinical trials and approved regulatory use. There are more than 170 clinical uses — including for neurodegenerative disorders and tumors of the brain, breast, lung, prostate and more — and the field is growing, Kassell said. “You can watch the effect of the ultrasound treatment in real time while the treatment’s being administered, whereas with radiation, the effect of the treatment is invisible while it’s being administered,” Kassell said. “And it takes weeks or months for the effect of radiation to become apparent.”
... Use for depression and obsessive-compulsive disorder is on the table, according to a small 2020 study by Lipsman and a team of researchers. They found focused ultrasound was safe and effective in improving symptoms for people with major depression and OCD. But further studies are needed.
https://us.cnn.com/2023/01/15/health...ess/index.html
Revolutionizing Renewable Energy: Using Sunlight To Produce Hydrogen Fuel Out of Thin Air
A device that can harvest water from the air and provide hydrogen fuel—entirely powered by solar energy—has been a dream for researchers for decades. Now, EPFL chemical engineer Kevin Sivula and his team have made a significant step towards bringing this vision closer to reality. They have developed an ingenious yet simple system that combines semiconductor-based technology with novel electrodes that have two key characteristics: they are porous, to maximize contact with water in the air; and transparent, to maximize sunlight exposure of the semiconductor coating. When the device is simply exposed to sunlight, it takes water from the air and produces hydrogen gas. The results are published on 4 January 2023 in Advanced Materials.
... In their research for renewable fossil-free fuels, the EPFL engineers in collaboration with Toyota Motor Europe, took inspiration from the way plants are able to convert sunlight into chemical energy using carbon dioxide from the air. A plant essentially harvests carbon dioxide and water from its environment, and with the extra boost of energy from sunlight, can transform these molecules into sugars and starches, a process known as photosynthesis. The sunlight’s energy is stored in the form of chemical bonds inside of the sugars and starches. The transparent gas diffusion electrodes developed by Sivula and his team, when coated with a light harvesting semiconductor material, indeed act like an artificial leaf, harvesting water from the air and sunlight to produce hydrogen gas. The sunlight’s energy is stored in the form of hydrogen bonds.
... [However] While the scientists did not formally study the solar-to-hydrogen conversion efficiency in their demonstration, they acknowledge that it is modest for this prototype, and currently less than can be achieved in liquid-based PEC cells. Based on the materials used, the maximum theoretical solar-to-hydrogen conversion efficiency of the coated wafer is 12%, whereas liquid cells have been demonstrated up to 19% efficient.
https://scitechdaily.com/revolutioni...t-of-thin-air/
A device that can harvest water from the air and provide hydrogen fuel—entirely powered by solar energy—has been a dream for researchers for decades. Now, EPFL chemical engineer Kevin Sivula and his team have made a significant step towards bringing this vision closer to reality. They have developed an ingenious yet simple system that combines semiconductor-based technology with novel electrodes that have two key characteristics: they are porous, to maximize contact with water in the air; and transparent, to maximize sunlight exposure of the semiconductor coating. When the device is simply exposed to sunlight, it takes water from the air and produces hydrogen gas. The results are published on 4 January 2023 in Advanced Materials.
... In their research for renewable fossil-free fuels, the EPFL engineers in collaboration with Toyota Motor Europe, took inspiration from the way plants are able to convert sunlight into chemical energy using carbon dioxide from the air. A plant essentially harvests carbon dioxide and water from its environment, and with the extra boost of energy from sunlight, can transform these molecules into sugars and starches, a process known as photosynthesis. The sunlight’s energy is stored in the form of chemical bonds inside of the sugars and starches. The transparent gas diffusion electrodes developed by Sivula and his team, when coated with a light harvesting semiconductor material, indeed act like an artificial leaf, harvesting water from the air and sunlight to produce hydrogen gas. The sunlight’s energy is stored in the form of hydrogen bonds.
... [However] While the scientists did not formally study the solar-to-hydrogen conversion efficiency in their demonstration, they acknowledge that it is modest for this prototype, and currently less than can be achieved in liquid-based PEC cells. Based on the materials used, the maximum theoretical solar-to-hydrogen conversion efficiency of the coated wafer is 12%, whereas liquid cells have been demonstrated up to 19% efficient.
https://scitechdaily.com/revolutioni...t-of-thin-air/
Orbit of Doom: The Surprising Connection Between Earth’s Orbital Patterns and an Ancient Warming Event
An international team of scientists has suggested that changes in Earth’s orbit that resulted in hotter conditions may have played a role in triggering a rapid global warming event that occurred 56 million years ago. This event, known as the Paleocene-Eocene Thermal Maximum (PETM), is considered to be an analog to modern-day climate change.
“The Paleocene-Eocene Thermal Maximum is the closest thing we have in the geologic record to anything like what we’re experiencing now and may experience in the future with climate change,” said Lee Kump, professor of geosciences at Penn State University. “There has been a lot of interest in better resolving that history, and our work addresses important questions about what triggered the event and the rate of carbon emissions.” The team of scientists studied core samples from a well-preserved record of the PETM near the Maryland coast using astrochronology, a method of dating sedimentary layers based on orbital patterns that occur over long periods of time, known as Milankovitch cycles. They found the shape of Earth’s orbit, or eccentricity, and the wobble in its rotation, or precession, favored hotter conditions at the onset of the PETM and that these orbital configurations together may have played a role in triggering the event.
“An orbital trigger may have led to the carbon release that caused several degrees of global warming during the PETM as opposed to what’s a more popular interpretation at the moment that massive volcanism released the carbon and triggered the event,” said Kump, the John Leone Dean in the College of Earth and Mineral Sciences.
The findings, published in the journal Nature Communications, also indicated the onset of the PETM lasted about 6,000 years. Previous estimates have ranged from several years to tens of thousands of years. The timing is important to understand the rate at which carbon was released into the atmosphere, the scientists said.
... A 6,000-year onset, coupled with estimates that 10,000 gigatons of carbon were injected into the atmosphere as the greenhouse gases carbon dioxide or methane, indicates that about one and a half gigatons of carbon were released per year.
“Those rates are close to an order of magnitude slower than the rate of carbon emissions today, so that is cause for some concern,” Kump said. “We are now emitting carbon at a rate that’s 5 to 10 times higher than our estimates of emissions during this geological event that left an indelible imprint on the planet 56 million years ago.”
An international team of scientists has suggested that changes in Earth’s orbit that resulted in hotter conditions may have played a role in triggering a rapid global warming event that occurred 56 million years ago. This event, known as the Paleocene-Eocene Thermal Maximum (PETM), is considered to be an analog to modern-day climate change.
“The Paleocene-Eocene Thermal Maximum is the closest thing we have in the geologic record to anything like what we’re experiencing now and may experience in the future with climate change,” said Lee Kump, professor of geosciences at Penn State University. “There has been a lot of interest in better resolving that history, and our work addresses important questions about what triggered the event and the rate of carbon emissions.” The team of scientists studied core samples from a well-preserved record of the PETM near the Maryland coast using astrochronology, a method of dating sedimentary layers based on orbital patterns that occur over long periods of time, known as Milankovitch cycles. They found the shape of Earth’s orbit, or eccentricity, and the wobble in its rotation, or precession, favored hotter conditions at the onset of the PETM and that these orbital configurations together may have played a role in triggering the event.
“An orbital trigger may have led to the carbon release that caused several degrees of global warming during the PETM as opposed to what’s a more popular interpretation at the moment that massive volcanism released the carbon and triggered the event,” said Kump, the John Leone Dean in the College of Earth and Mineral Sciences.
The findings, published in the journal Nature Communications, also indicated the onset of the PETM lasted about 6,000 years. Previous estimates have ranged from several years to tens of thousands of years. The timing is important to understand the rate at which carbon was released into the atmosphere, the scientists said.
... A 6,000-year onset, coupled with estimates that 10,000 gigatons of carbon were injected into the atmosphere as the greenhouse gases carbon dioxide or methane, indicates that about one and a half gigatons of carbon were released per year.
“Those rates are close to an order of magnitude slower than the rate of carbon emissions today, so that is cause for some concern,” Kump said. “We are now emitting carbon at a rate that’s 5 to 10 times higher than our estimates of emissions during this geological event that left an indelible imprint on the planet 56 million years ago.”
Discovery of Checkerboard Pattern of Inner Ear Cells That Is Vital for Hearing
The inner ear cochlea is necessary for hearing sound, and located inside it is the organ of Corti. When the organ of Corti is viewed from above under a microscope, two types of cells arranged in a precisely ordered layout resembling a chess or checkerboard can be seen. Hair cells that convey sound waves to the brain are separated by support cells, which prevent the hair cells from touching each other. Although it has been thought that this checkerboard arrangement is necessary for the organ of Corti to function properly, the relationship between this pattern and hearing function has long remained unclear.
For the first time in the world, it was understood that the checkerboard layout plays a fundamental structural role in preserving hair cells and their functionality as the arrangement prevents hair cells from adhering to each other. This mosaic pattern of cells has been observed in various sensory organs in many different kinds of animals. Understanding the mechanism behind how cell self-organization forms these mosaic patterns will help illuminate the functions of a variety of sensory organs and the mechanisms behind disorders.

Left: The organ of Corti from a normal (control) mouse. The hair cells and their support cells are lined up in an alternating, checkerboard-like pattern. Right: The organ of Corti [in which] the hair cells in nectin KO mice disappeared due to apoptosis (cell death).
The inner ear cochlea is necessary for hearing sound, and located inside it is the organ of Corti. When the organ of Corti is viewed from above under a microscope, two types of cells arranged in a precisely ordered layout resembling a chess or checkerboard can be seen. Hair cells that convey sound waves to the brain are separated by support cells, which prevent the hair cells from touching each other. Although it has been thought that this checkerboard arrangement is necessary for the organ of Corti to function properly, the relationship between this pattern and hearing function has long remained unclear.
For the first time in the world, it was understood that the checkerboard layout plays a fundamental structural role in preserving hair cells and their functionality as the arrangement prevents hair cells from adhering to each other. This mosaic pattern of cells has been observed in various sensory organs in many different kinds of animals. Understanding the mechanism behind how cell self-organization forms these mosaic patterns will help illuminate the functions of a variety of sensory organs and the mechanisms behind disorders.

Left: The organ of Corti from a normal (control) mouse. The hair cells and their support cells are lined up in an alternating, checkerboard-like pattern. Right: The organ of Corti [in which] the hair cells in nectin KO mice disappeared due to apoptosis (cell death).
stlah
Leave a comment: