Alien Oceans Could Hold Way More Life Than Earth’s Waters Ever Did, New Research Suggests
... new research suggests that some distant worlds could put the Blue Marble's biodiversity to shame.
It's not because these other, hypothetically habitable exoplanets are devoid of humans (though Earth's biodiversity would definitely be looking better without us). Rather, a planet's potential to harbor life could hinge on how well its oceans move nutrients around the world, University of Chicago geoscientist Stephanie Olson said today (Aug. 23) in a presentation at the Goldschmidt Geochemistry Congress in Barcelona. ...
One circulation pattern in particular — known as "upwelling" — may be key to fostering life in the seas, Olson said. Upwelling occurs when wind rushes along the ocean's surface, creating currents that push deep, nutrient-rich water up toward the top of the sea, where photosynthetic plankton live. The plankton feed on these nutrients, allowing them to produce organic compounds that feed larger organisms, which in turn become meals for still-larger organisms, and so on up the food chain.
As members of the food chain die and decompose, their organic remains sink to the bottom of the sea, where they may get caught in another upwelling and feed the surface life again. Thanks to this efficient, underwater recycling system, biodiversity tends to thrive in upwelling areas on Earth (mainly near the coasts). The same is likely true on habitable exoplanets, Olson said, which means that planets with conditions that favor more ocean upwelling may also favor strong biodiversity.
https://www.livescience.com/alien-ex...diversity.html
... new research suggests that some distant worlds could put the Blue Marble's biodiversity to shame.
It's not because these other, hypothetically habitable exoplanets are devoid of humans (though Earth's biodiversity would definitely be looking better without us). Rather, a planet's potential to harbor life could hinge on how well its oceans move nutrients around the world, University of Chicago geoscientist Stephanie Olson said today (Aug. 23) in a presentation at the Goldschmidt Geochemistry Congress in Barcelona. ...
One circulation pattern in particular — known as "upwelling" — may be key to fostering life in the seas, Olson said. Upwelling occurs when wind rushes along the ocean's surface, creating currents that push deep, nutrient-rich water up toward the top of the sea, where photosynthetic plankton live. The plankton feed on these nutrients, allowing them to produce organic compounds that feed larger organisms, which in turn become meals for still-larger organisms, and so on up the food chain.
As members of the food chain die and decompose, their organic remains sink to the bottom of the sea, where they may get caught in another upwelling and feed the surface life again. Thanks to this efficient, underwater recycling system, biodiversity tends to thrive in upwelling areas on Earth (mainly near the coasts). The same is likely true on habitable exoplanets, Olson said, which means that planets with conditions that favor more ocean upwelling may also favor strong biodiversity.
https://www.livescience.com/alien-ex...diversity.html
... ya have to be of a certain age I guess ...
Gassho, J
STLah
Comment